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ABSTRACT

Coastlines in numerical ocean models are oriented at various finite angles to the

model grid. Such arbitrarily angled coasts cannot easily be represented in finite

difference models. Thus the true coastline is usually replaced by a piecewise-constant

approximation in which the model coastline is everywhere aligned with the model

grid. Here we study the consequences of the piecewise-constant approximation in

an idealised shallow-water ocean model. By rotating the numerical grid at various

finite angles to the physical coastlines, we are able to isolate the impact of piecewise-

linear boundaries on the model circulation. We demonstrate that piecewise-constant

coastlines exert a spurious drag on model boundary currents, dependent on both the

implementation of the slip boundary condition and the form of the viscous stress

tensor. In particular, when free-slip boundary conditions are applied, the character

of the circulation can be reduced to no-slip in the presence of a piecewise-constant

boundary. The spurious drag can be avoided in a free-slip limit if the viscous stress

tensor is written in terms of vorticity and divergence.
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1. Introduction

The choice of lateral boundary condition in a numerical ocean model has a
profound influence on the separation and recirculation of boundary currents,
such as the Gulf Stream, and on the transport of water masses through gaps,
such as the Indonesian through-flow. While the appropriate boundary con-
dition for a continuum fluid is “no-slip” (for example, Richarson, 1973), it
is less clear that no-slip is appropriate for a finite-resolution ocean model in
which a boundary current is barely resolved by the numerical grid. Alterna-
tive slippery boundary conditions have been advocated in which the tangential
component of the boundary velocity remains finite. The “free-slip” condition is
the most wide-spread, in which the tangential shear at the boundary vanishes;
“hyper-slip” and “super-slip” conditions have also been proposed to enable
advection of vorticity along coastlines. An excellent review of these various
boundary conditions, and their impact on the large-scale circulation, is given
by Pedlosky, 1996.

Irrespective of the chosen boundary condition, ocean general circulation
models (OGCMs) need also to accommodate irregular coastlines which are
oriented at finite angles to the model grid. In a typical finite difference model,
such coastlines are generally replaced by a piecewise-constant approximation
in which the model boundary is everywhere parallel to the model grid (Fig. 1).
While the piecewise-constant treatment greatly simplifies numerical implemen-
tation of the solid-wall boundary condition, the implications for the slippery
character of model coastlines are less clear. For example, where the coastline
is oriented at 45◦ to the model grid, one is effectively setting both components
of the fluid velocity, u and v, to zero within one grid point of each other,
even where a slippery boundary condition is prescribed. The aims of this
contribution are:

• to demonstrate that piecewise-constant coastlines exert a spurious drag
on model boundary currents; and

• to investigate the sensitivity of this spurious drag to the implementa-
tion of the slip boundary condition and formulation of the viscous stress
tensor.
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In section 2, we describe the strategy and formulation of our numerical
experiments. In section 3, we present solutions in which the lateral boundary
condition is implemented using “ghost points” lying outside the model domain.
In section 4, we present solutions in which the boundary condition is instead
applied directly to the stress tensor, and we also investigate sensitivity of
our results to different formulations of the stress tensor. In section 5, the
implications of our results for numerical ocean models are discussed further.

2. Numerical model

2.1. General approach

Our approach is to consider the wind-driven circulation in a square ocean
basin in which we rotate the numerical grid at various finite angles to the
model coastlines, as sketched schematically in Fig. 2. Any differences between
solutions at different angles of rotation can thus be attributed to the piecewise-
constant nature of the approximated model coastline (we assume that effects
associated with anisotropy of the numerical grid are not significant). The wind-
stress, τ = −τ0 cos (πỹ/L)̃i, and Coriolis parameter, f = f0 + βỹ are specified
as functions of the physical coordinates (x̃, ỹ), distinct from the rotated model

coordinates (x, y) aligned along the numerical grid. The basin is bounded by
solid walls at x̃ = 0, L and ỹ = 0, L.

2.2. Discretised equations

The discretised shallow-water equations are written:

∂tu − (f + ζ)
y
vxy + ∂xB =

τ (x)

ρoh
x − ru + ν∇2u, (1)

∂tv + (f + ζ)
x
uxy + ∂yB =

τ (y)

ρoh
y − rv + ν∇2v, (2)

∂th + ∂x(h
x
u) + ∂y(h

y
v) = 0. (3)

4



Here, (u, v) is the fluid velocity, h is the thickness of the shallow-water layer,
ζ = ∂xv − ∂yu is the relative vorticity, B = g′h + 1

2
(ux2 + vy2) is the Bernoulli

potential, g′ is the reduced gravity, ρo is a reference density, r is the coefficient
of linear friction, and ν is the coefficient of lateral eddy viscosity. The model
variables are staggered in the form of an Arakawa C-grid. The numerical
discretisation of the momentum equations is that of Bleck and Boudra, 1986;
the discrete equations conserve mass and enstrophy, but not energy. The
discretisation is nominally second-order accurate in space: the grid-spacing is
constant and all interpolations and discrete measurements of gradients in the
interior of the ocean are centred.

2.3. Boundary conditions

The solid boundaries are placed such that north-south sections of coast-
line fall on u-points, and east-west sections fall on v-points. The solid wall
boundary condition of no normal flow is therefore naturally imposed.

A second boundary condition is required to evaluate the lateral friction and
the vorticity at the boundaries. The two alternatives considered here are:

• no-slip where the tangential flow is zero on the boundary, and

• free-slip where the tangential shear vanishes on the boundary but the
tangential flows remains finite.

The free-slip boundary condition is synonymous with the “stress-free” bound-
ary condition in which the tangential stress is set to zero.

In the solutions presented in section 3, the boundary conditions are imple-
mented using “ghost points” lying a half grid point outside the model domain.
Along a no-slip boundary, the velocity at the ghost point is set equal and
opposite to the interior value, whereas along a free-slip boundary, the ghost
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velocity is set equal to the interior value:

no-slip: vx = 0 (north-south boundary)
uy = 0 (east-west boundary)

free-slip: ∂xv = 0 (north-south boundary)
∂yu = 0 (east-west boundary)

(4)

This convenient approach is widely used in numerical models (for example,
Bleck et al., 1992).

An alternative implementation of the boundary conditions applied directly
to the viscous stress tensor will be described subsequently in section 4.

2.4. Numerical details

The model parameters used for all experiments are: L = 2000 km, f0 = 0.7×
10−4 s−1, β = 2×10−11 m−1 s−1, ν = 500 m2s−1, r = 10−7 s−1, ρ0 = 103 kg m−3,
g′ = 0.02 m s−2 and τo = 0.2 N m−2. The initial layer thickness is h0 = 500 m.

The grid-spacing is ∆x = ∆y = 25 km, equivalent to ∼ 1/4◦ resolution
at midlatitudes. The nominal deformation radius, Lρ =

√
g′h0/f0 ≈ 45 km,

is resolved by the grid, and the wave resolution parameter, 2Lρ/∆x ∼ 3.6,
ensures the discrete inertia-gravity waves are properly dispersive. The Munk
boundary layer scale, (ν/β)1/3 ∼ 30 km, is barely resolved (in keeping with
the majority of present-day OGCMs). The third order Adams-Bashforth (III)
time-stepping scheme is used with a time-step of ∆t = 0.25 hours. All experi-
ments are integrated for 10 years from a state of rest, after which time each is
converging towards either a steady state or a statistically-steady limit cycle.
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3. Results

3.1. Solutions on a non-rotated grid

First we consider the solutions obtained on a non-rotated grid that is parallel
to the model coastlines. The structure of the gyre is singularly sensitive to
the choice of no-slip or free-slip lateral boundary condition (Blandford, 1971).
Figure 3 illustrates this point by showing snapshots of the fluid depth, h, after
ten years of integration with (a) no-slip boundary conditions, and (b) free-slip
boundary conditions. Here, the boundary conditions are implemented using
the method of ghost points described above. In each case the solutions are
converging towards a steady state.

The “no-slip ” solution (Fig. 3a) is characterised by a Sverdrup interior,
an inertial boundary current along the western margin of the basin, and a
standing eddy in the north-west corner of the basin. A standing Rossby wave
is superimposed on the Sverdrup interior and decays away from the western
boundary. The transport of the recirculating gyre is approximately 35 Sv.

The “free-slip” solution (Fig. 3b) is also composed of a Sverdrup interior and
an inertial boundary current along the western margin, but now with an ex-
tended inertial recirculation sub-gyre across the northern margin of the basin.
The latter enhances the gyre transport to 70 Sv, considerably in excess of the
30 Sv predicted by Sverdrup balance (Sverdrup, 1947). Observations indicate
that the transport of the Gulf Stream increases from 30 Sv off the coast of
Florida (Niiler and Richardson, 1973) to 85 Sv at Cape Hatteras (Worthington,
1972), broadly consistent with the free-slip solution. The eastward-flowing jet,
representing the separated Gulf Stream, penetrates approximately 1700 km
along the northern edge of the gyre

The above solutions are characteristic of the classical “no-slip” (Bryan, 1963)
and “free-slip” (Veronis, 1966) circulations, and serve as the “control exper-
iments” against which we now compare results obtained on rotated model
grids.
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3.2. Solutions on rotated grids

The above experiments are repeated under identical conditions except that
the model grid is rotated at three finite angles to the coastlines, which therefore
assume a piecewise-constant appearance. Fig. 4 shows the layer thickness, h,
after 10 years of integration using both no-slip (left panels) and free-slip (right
panels) boundary conditions, on grids rotated at 5◦ (top row), 10◦ (middle
row) and 45◦ (bottom row) relative to the coastlines.

For small angles of rotation, the no-slip solutions (left panels) are broadly
consistent with the control simulation in Fig. 3a. The characteristic tight re-
circulating sub-gyre in the northwest corner is retained along with the stand-
ing Rossby wave decaying away from the western boundary current. At
45◦ rotation, however, the inertial boundary current separates prematurely
from the western boundary (bottom left panel), and the recirculating eddy in
intensified. The separation point is not steady, but settles into a limit cycle,
migrating approximately 100km up and down the coastline.

In contrast, the free-slip solutions are fundamentally altered for all angles
of rotation, even as small as 5◦ . In each case, including negative angles of
rotation (not shown), the circulation assumes the character of the classical
no-slip limit. Thus the introduction of piecewise-constant coastlines appears
to represent a singular perturbation on the structure of the free-slip solution
in these experiments.

On the grid rotated at 45◦ , the free-slip and no-slip solutions are exactly
identical which clearly contradicts the use of different boundary conditions in
each. To understand this behaviour, consider the numerical integration of the
v momentum equation, (2), adjacent to a western boundary. On a non-rotated
grid (Fig. 5a), the ghost points are used to evaluate both the lateral friction
term, −ν∇2v, half a grid-point inside the boundary, and the vorticity, ζ, at the
boundary. On the rotated grid (Fig. 5b), however, one is able to evaluate both
terms without using ghost points. No viscous boundary condition is therefore
used along the piecewise-constant coastline oriented at 45◦ .
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3.3. A thought experiment

To obtain a quantitative estimate of the error incurred on the rotated grid,
consider the ideal scenario of an initial semi-infinite current with a uniform
northward velocity ṽ =

√
2U , adjacent to a western boundary. If the layer

thickness, h, can be considered constant at leading order, then the net viscous
deceleration of the current per unit length of coastline (measured in the ỹ
direction) is simply

D =

∫

ỹ

∞
∫

0
ρ0ν∇2ṽ dx̃ dỹ

∫

ỹ
dỹ

. (5)

We identify D as the “net viscous stress” acting on the current, incorporating
both a tangential (shear) stress and normal (form) stress.

On the non-rotated grid (Fig. 5a), the only contribution is from the v+

velocity points adjacent to the coastline, giving

no-slip: D = −2
√

2ρ0νU / ∆x,
free-slip: D = 0.

(6)

On the grid rotated at 45◦ (Fig. 5b), we must consider the viscosity at both the
u+ and v+ velocity points where ν∇2u = −2νU/(∆x)2, ν∇2v = −2νU/(∆x)2

respectively. Projecting onto the ỹ axis then gives,

D = −2ρ0νU / ∆x, (7)

identical for both no-slip and free-slip boundary conditions.

The net viscous stress is therefore underestimated by a factor
√

2 along the
no-slip boundary rotated at 45◦ , consistent with the enhanced gyre transport
observed in the numerical solution (Fig. 4). Along the free-slip boundary, the
viscous stress is finite whereas it should be zero, again consistent with the
numerical results.
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4. Boundary conditions applied to stress tensor

The results of section 3 indicate that spurious frictional stresses are exerted
along piecewise-constant boundaries where the boundary conditions are im-
plemented using ghost points. We now investigate the possibility that these
problems might be avoided by applying the no-slip/free-slip boundary condi-
tion directly to the viscous stress tensor to ensure the correct boundary stress.

4.1. Stress tensor formulations

First, we rewrite the lateral friction term in the momentum equations, (1)
and (2), as the divergence of stresses,

ν∇2u → ∂xF
ux + ∂yF

uy,

ν∇2v → ∂xF
vx + ∂yF

vy,

where

F =

(

F ux F uy

F vx F vy

)

.

is the viscous stress tensor.1 Following Batchelor, 1967, we refer to F ux and
F vy as “normal” stresses, and F uy and F vx as “tangential” stresses. Three
forms of F are considered here:

• the conventional form,

F ������� =

(

ν∂xu ν∂yu
ν∂xv ν∂yv

)

, (8)

• the symmetric form,

F �	��
 =

(

ν(∂xu − ∂yv) ν(∂yu + ∂xv)
ν(∂yu + ∂xv) −ν(∂xu − ∂yv)

)

, (9)

1Note that F must be multiplied by the density ρ0 to give a force per unit area.
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• and the vorticity-divergence form,

F ����� =

(

ν(∂xu + ∂yv) −ν(∂xv − ∂yu)
ν(∂xv − ∂yu) ν(∂xu + ∂yv)

)

. (10)

The conventional form (8) is the most widely used in ocean models. However,
compelling arguments in favour of the symmetric form (9) have been given by
Shchepetkin and O’Brien, 1996, the essential points being that the Reynolds
stress tensor is symmetric (u′v′ = v′u′) and that a non-zero antisymmetric
component leads to non-conservation of angular momentum (Batchelor, 1967;
Panton, 1996). The vorticity-divergence form (10) is antisymmetric (for ex-
ample, Madec et al., 1991) but is useful in allowing selective dissipation of
gravity-waves through different viscosities acting on vorticity and divergence.

All three forms of the stress tensor give rise to the same dissipation in the
continuous momentum equations; that is, expanding the divergence of the
tensor, the actual dissipation is ∇.F = ν∇2u in each case. However, at the
discrete level the three forms can possess different properties adjacent to model
coastlines.

4.2. Implementation of boundary conditions

The normal stresses (F ux and F vy) can be evaluated adjacent to boundaries
without additional boundary conditions. However the tangential stresses fall
on the boundary and must be specified through a boundary condition. On
free-slip boundaries, we reinterpret “free-slip” to mean “stress-free” and set
the tangential stress to zero:

free-slip: F vx = 0 (north-south boundary)
F uy = 0 (east-west boundary)

(11)

On no-slip boundaries, the velocity shear is made proportional to the interior
tangential flow:

no-slip: ∂xv = −2v+/∆x (north-south boundary)
∂yu = −2u+/∆y (east-west boundary)

(12)
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where u+, v+ refer to the tangential velocity components a distance ∆x/2
inside the boundary. These components of velocity shear are then used to
evaluate the tangential stress on the boundary which will depend on the par-
ticular form of stress tensor. On a non-rotated grid, the above lead to the
same tangential stress as in the previous section, irrespective of the form of
stress tensor. Note that the no-slip boundary condition essentially involves a
side-difference which is only O(∆x) accurate (Shchepetkin and O’Brien, 1996).
For the free-slip boundary condition, however, the statement of zero tangential
stress on the boundary is exact and does not incur a loss of accuracy.

The discretised model also requires the vorticity on the boundary to evaluate
the nonlinear terms in the momentum equations. On a no-slip boundary the
velocity shears are specified in the lateral boundary conditions (12) from which
the vorticity follows directly. On a free-slip boundary, we set the relative
vorticity to zero, consistent with the experiments presented in section 3 (here
we are implicitly neglecting any vorticity associated with curvature of the
boundary).

4.3. Numerical results

For all three forms of stress tensor, the solutions obtained on a non-rotated
grid are identical to those obtained previously using ghost points (Fig. 3). We
now present solutions after 10 years of integration on grids rotated at 10◦ ,
30◦ and 45◦ .

Solutions obtained using the conventional form of stress tensor are shown
in Fig. 6 for no-slip (left panels) and free-slip (right panels) boundary condi-
tions. The no-slip solutions are similar to those obtained using ghost points;
in particular there is a tendency for premature boundary current separation at
large angles of rotation. However, the free-slip solutions differ markedly from
those obtained using ghost points. The solution on the 10◦ grid is of classical
free-slip character. The gyre contains an extended inertial recirculation along
its northern margin, although its penetration is somewhat reduced from that
on the non-rotated grid. On the 30◦ grid, the penetration of the subgyre is
much reduced, and on the 45◦ grid the solution is closer to the classical no-slip
limit. In contrast to Fig. 4, the 45◦ no-slip and free-slip circulations are no
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longer identical.

Solutions obtained using the symmetric stress tensor are shown in Fig. 7.
The behaviour of the no-slip solutions is very much as for the conventional
stress tensor; the boundary current separates progressively further south as
the angle of rotation is increased. The free-slip solutions are more affected by
the rotation of the grid than in the case of the conventional stress tensor.

Finally, solutions obtained using the vorticity-divergence (ζ − D) form of
the stress tensor are shown in Fig. 8. Again, the no-slip solutions exhibit
a tendency towards early separation at large angles of rotation. However,
the free-slip solutions are far less affected by the rotation of the grid. The
penetration of the inertial recirculation is diminished with increasing angle
and the strength of the subgyre is increased beyond that obtained in the non-
rotated solutions. Nevertheless, the solution is of classical free-slip character
for all three angles of rotation.

4.4. Thought experiment

To explain these results we return to the thought experiment of section 3.3
in which we consider a uniform northward current, ṽ =

√
2U , adjacent to a

western boundary on a grid rotated at 45◦ . As in section 3.3, we define the
“net viscous stress” as the net viscous deceleration of the current per unit
length of coastline (measured in the ỹ direction),

D =

∫

ỹ

∞
∫

0
ρ0(∇.F ).̃j dx̃ dỹ

∫

ỹ
dỹ

. (13)

First consider the no-slip limit. The tangential and shear stresses are every-
where zero except at the points on and adjacent to the boundary (indicated
by the symbol + on Fig. 9). Below we list the two active components of the
stress tensor acting on the v momentum equation (similar terms act on the u
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momentum equation), and the net viscous stress:

F vx+ F vy+ D
conventional: 2νU / ∆x −νU / ∆x −3ρ0νU / ∆x,
symmetric: 0 −2νU / ∆x −2ρ0νU / ∆x,
ζ − D : 4νU / ∆x 0 −4ρ0νU / ∆x.

(14)

For comparison, recall that D = −2
√

2ρ0νU / ∆x on a non-rotated grid. Thus
we see that the net viscous stress is underestimated using the symmetric form
of the stress tensor, overestimated using the vorticity-divergence form, and is
slightly underestimated using the conventional form. The net viscous stress is
due to a different combination of normal and tangential stresses in each case.

Now consider the free-slip limit in which we find:

F vx+ F vy+ D
conventional: 0 −νU / ∆x −ρ0νU / ∆x,
symmetric: 0 −2νU / ∆x −2ρ0νU / ∆x,
ζ − D : 0 0 0.

(15)

Here, the net viscous stress should be zero, but this is only the case with
the vorticity-divergence form of the stress tensor. The tangential stresses are
correctly zero in each case. However, the appearance of finite normal stresses
indicates that a spurious form drag is being exerted on the current by the
roughness of the piecewise-constant boundary. This spurious form drag is
avoided only if one employs the vorticity–divergence form of the stress tensor.

5. Discussion

Our analysis and numerical results suggest the following points:

• Piecewise-constant coastlines exert a spurious stress on model boundary
currents, dependent on both the choice and implementation of the lateral
boundary condition.

• Where the boundary condition is implemented using ghost points, the
boundary stress is underestimated along a no-slip coastline, and is finite
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along a free-slip coastline. Further, the viscous boundary condition is
not used on a piecewise-coastline oriented at 45◦ to the model grid.

• Even where the boundary condition is applied directly to the tangen-
tial boundary stress, the numerical roughness inherent in the piecewise-
constant approximation nevertheless exerts a spurious form drag on the
fluid. Use of the vorticity-divergence form of viscous stress tensor avoids
this spurious form drag.

We have focussed in this paper exclusively on experiments in which the
width of the no-slip sublayer is comparable to the horizontal grid spacing (as
is the case in the majority of OGCM studies reported in the literature). How-
ever our conclusion that piecewise-constant coastlines exert a spurious form
drag on model boundary currents appears to hold even where the boundary
layer is resolved by several grid points. Figure 10 shows results obtained on
a grid rotated at 45◦ where the grid spacing has been reduced to ∆x = 6.25
km (four times finer resolution than used throughout the paper); no-slip and
free-slip solutions are shown in the left and right columns respectively. The
no-slip solutions are virtually identical for all three forms of stress tensor and
the boundary current no longer separates prematurely. However with free-
slip boundary conditions applied, the conventional and symmetric tensor solu-
tions are devoid of a large-amplitude penetrative inertial recirculation—even at
this resolution, the spurious form drag associated with the piecewise-constant
coastlines appears to modify the character of a free-slip solution towards the
classical no-slip limit. Only the vorticity-divergence tensor solution, in which
the spurious stresses are eliminated, shows the correct behaviour.2

We have also performed a number of additional experiments exploring sen-
sitivity to the frictional coefficients, the surface wind stress and domain size;
in particular, we have explored a number of alternative finite-difference for-
mulations including an energy-conserving version of the C-grid model and also
a B-grid discretisation. In all instances, we obtain similar results to those

2Recent work by Verron and Blayo, 1996 suggests that if the eddy viscosity is also reduced

to approximately 50m2 s−1 and the no-slip sublayer is properly resolved, then the no-slip

solution converges towards the classical free-slip limit. Thus at very high resolution, while

we would expect spurious form stresses along piecewise-constant coastlines to remain, their

impact on the structure of the circulation is likely to be reduced.
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reported in detail here.

A notorious failing of OGCMs is their inability to correctly model the sep-
aration of boundary currents, such as the Gulf Stream. A pervasive feature
of many of such models is the presence of a large-amplitude standing eddy
adjacent to the separation point (see, for example, Dengg et al., 1996). Free-
slip boundary conditions in principle allow for a more penetrative separated
boundary current devoid of such an eddy. However our results show that even
when the free-slip boundary condition is used, the circulation can be reduced to
a no-slip character in the vicinity of piecewise-constant coastlines. Our results
suggest that the behaviour of free-slip solutions might be improved if the stress
tensor is formulated in terms of vorticity and divergence. While the vorticity-
divergence form leads to non-conservation of angular momentum (Batchelor,
1967), there seems little purpose in using an angular momentum-conserving
symmetric tensor if spurious form stresses are subsequently generated at the
coastlines.

The impact of piecewise coastlines may be reduced in the presence of a
coastal topographic slope that will tend to displace the boundary current away
from the coast and thus possibly shield it from the difficulties at the boundary.
Nevertheless, we believe that ocean modellers need to reconsider the treatment
of coastlines in OGCMs. Several promising approaches have been suggested,
including finite elements (for example, Myers and Weaver, 1995) and shaved
cells (Adcroft et al., 1997); these should be fully investigated. The ultimate
goal should be to develop an ocean model in which the circulation is insensitive
to the orientation of the numerical grid.
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Fig. 1. A schematic diagram illustrating how observed coastlines are replaced
by piecewise-constant approximations in numerical models. The thick solid
line is the true coastline, the thin solid line is the approximated model coast-
line, and the dashed lines indicate the grid cells.
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Fig. 2. The model domain is restricted to square region, dimension 2000 km
× 2000 km, masked out from a rotated model grid. The physical coordi-
nates (x̃, ỹ) are distinct from the rotated model coordinates (x, y). The model
coastlines assume a piecewise-constant appearance as shown.
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Fig. 3. Instantaneous layer thickness, h (meters), after 10 years with (a) no-
slip and (b) free-slip boundary conditions on a non-rotated grid. The contours
are streamlines for the geostrophic flow.
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(c) No-slip 10◦ (d) Free-slip 10◦
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Fig. 4. Instantaneous layer thickness, h (meters), after 10 years on grids
rotated at 5◦ , 10◦ , and 45◦ , and boundary conditions implemented using
ghost points.
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Fig. 5. A schematic showing the distribution of velocity points adjacent to
a north-south boundary on (a) and unrotated grid, and (b) a grid rotated
at 45/Deg. On the non-rotated grid, the ghost point is used to solve the v
momentum equation at the point marked v+. On the rotated grid, however,
no ghost point is used.
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(c) No-slip 30◦ (d) Free-slip 30◦
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Fig. 6. Instantaneous layer thickness, h (meters), after 10 years, from integra-
tions with the conventional form of the viscous stress tensor.
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(c) No-slip 30◦ (d) Free-slip 30◦
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Fig. 7. Instantaneous layer thickness, h (meters), after 10 years, from integra-
tions using the symmetric form of the viscous stress tensor.
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Fig. 8. Instantaneous layer thickness, h (meters), after 10 years, from integra-
tions using the vorticity-divergence form of the viscous stress tensor.
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Fig. 9. Schematic diagram showing the placement of the tangential and normal
stresses, F vx+ and F vy+, adjacent to the coastline on a grid rotated at 45◦ .
Also shown are the velocity values for the thought experiment described in the
text.
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(c) Symmetric No-slip (d) Symmetric Free-slip
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(e) ζ − D No-slip (f) ζ − D Free-slip
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Fig. 10. Instantaneous layer thickness, h (meters), after 10 years, on a grid
rotated at 45◦ with quadruple spatial resolution (∆x = 6.25 km).


